February 29, 2008

Transgenic Rice Breeding for Abiotic Stress Tolerance-Present and Future

Environmental stresses and the continuing deterioration of arable land, along with an explosive increase in world population, pose serious threats to global agricultural production and food security. Improving the tolerance of the major crop plants to abiotic stresses has been a main goal in agriculture for a long time. As rice is considered one of the major crops, the development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice cultivars. In recent years, an array of stress-related genes has already been transferred to rice to improve its resistance against abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. This article focuses on the progress in the study of abiotic stress tolerance in transgenic rice breeding.

Source: Chinese Journal of Biotechnology, Vol 23, 2007, Pages 1-7

February 27, 2008

My article on Organic Letters 2007

Regiochemical and stereochemical evidence for enzyme-initiated catalysis in dual positional specific maize lipoxygenase-1

Dual positional specific maize lipoxygenase-1 catalyzed the formation of racemic mixtures of four possible regioisomers and was strongly inhibited by the radical scavenger, 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinoxy radical. Molecular modeling studies indicated that the oxygen-binding cavity is segregated from the substrate-binding cavity. The data suggest that a bis-allylic radical reaction intermediate is generated enzymatically, released from the enzyme active site, and subsequently oxygenated outside of the enzyme active site by a nonenzymatic mechanism.

My article on J Biochem Mol Biol 2007

Biochemical characterization of the dual positional specific maize lipoxygenase and the dependence of lagging and initial burst phenomenon on pH, substrate, and detergent during pre-steady state kinetics

The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (K(m) and k(cat) values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

My article on Bioorganic Chemistry 2003

A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen

In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.