Germination and subsequent hydroponic growth under salt stress (100 mmol/L NaCl) triggered an accumulation of six major stress proteins and resulted in a growth arrest of young seedlings of rice (Oryza sativa L.) cv. Bura Rata. Based on two-dimensional electrophoretic resolution, partial amino acid sequencing and immunodetection techniques, four of the salt stress-induced polypeptides were identified as LEA proteins. Under all experimental conditions wherein seedlings exhibited superior halotolerance, salt stress-induced LEA proteins were expressed at low levels. In contrast, accumulation of LEA proteins was found associated with growth arrest. When returned to non-saline media, seedlings stressed with salt for four days recovered immediately. Longer exposure to 100 mmol/L NaCl, however, progressively delayed recovery and reduced the number of seedlings which could recover from salt stress. Recovery from salt stress was consistently accompanied by degradation of the salt stress-induced LEA proteins. The results of this study show that LEA proteins accumulate during the salinity-triggered growth arrest of young Bura Rata seedlings and are mobilised during the recovery of seedlings from salinity stress.
Source: Journal of Plant Physiology (2003) vol. 160, p. 1165-1174
Source: Journal of Plant Physiology (2003) vol. 160, p. 1165-1174