July 23, 2005

Development of transgenic rice plants overexpressing the Arabidopsis H+/Ca2+ antiporter CAX1 gene

The gene of the Arabidopsis thaliana H+/Ca2+ transporter, CAX1 (cation exchanger 1) was introduced into Japonica cultivars of rice (Ilpumbyeo) by Agrobacterium-mediated transformation, and a large number of transgenic plants were produced. The neomycin phosphotransferase II (NPTII) gene was used as a selectable marker. The activity of neomycin phosphotransferase could be successfully detected in transgenic rice callus. The introduction of the CAX1 gene was also proven by PCR using CAX1-specific oligonucleotide primers in regenerated plants. Stable integration and expression of the CAX1 gene in T0 plants and T1 progeny were confirmed by DNA hybridization, Northern blot analysis, and luminescent analysis.

Source: Plant Cell Rep. (2005) vol. 23, p. 678-682

July 2, 2005

Inheritance and expression of the cry1Abgene in Bt ( Bacillus thuringiensis) transgenic rice

The inheritance and expression patterns of the cry1Ab gene were studied in the progenies derived from different Bt (Bacillus thuringiensis) transgenic japonica rice lines under field conditions. Both Mendelian and distorted segregation ratios were observed in some selfed and crossed F2 populations. Crosses between japonica intrasubspecies had no significant effect on the segregation ratios of the cry1Ab gene, but crossing between japonica and indica inter-subspecies led to distorted segregation of the cry1Ab gene in the F2 population. Field-release experiments indicated that the cry1Ab gene was stably transmitted in an intact manner via successive sexual generations, and the concentration of the CrylAb protein was kept quantitatively stable up to the R6 generation. The cry1Ab gene, driven by the maize ubiquitin promoter, displayed certain kinds of spatial and temporal expression patterns under field conditions. The content of the CrylAb protein varied in different tissues of the main stems, the primary tillers and the secondary tillers. Higher levels of the CrylAb protein were found in the stems, leaves and leaf sheaths than in the roots, while the lowest level was detected in grains at the maturation stage. The content of the Cry1Ab protein in the leaves peaked at the booting stage and was lowest at the heading stage. Furthermore, the CrylAb content of cry1Ab expression in different tissues of transgenic rice varied individually with temperature.

Source: Theoretical and Applied Genetics (2002) vol. 104, p. 727-734